

NASA FPGA Needs and Activities

Kenneth A. LaBel at BNL
Co- Manager NASA Electronic Parts
and Packaging (NEPP) Program
RHOC AOWG Member
NASA/GSFC Code 561
ken.label@nasa.gov
301-286-9936

Rich Katz
NASA Office of Logic Design
richard.b.katz@nasa.gov
301-286-9705

Unclassified

Outline

- NASA Radiation Environments and Effects of Concern
- NASA Missions
 - Implications to reliability and radiation constraints
- FPGA Trade Space for NASA
- Current Usage Base
- NASA Activities in FPGAs
- FPGA Desirements
- Technical Barriers
- Summary Comments

Typical SEE Test Board for an array of programmable logic device types

The Space Radiation Environment

STARFISH detonation – Nuclear attacks are not considered in this presentation

Space Environments and Related Effects

NASA and FPGAs - AGED FPGA Study - Aug, 3 2004 - Monterey, CA - Presented by Kenneth A. LaBel

Space Radiation Environment

after Nikkei Science, Inc. of Japan, by K. Endo

Deep-space missions may also see: neutrons from background or radioisotope thermal generators (RTGs) or other nuclear source Atmosphere and terrestrial may see GCR and secondaries

The Effects

DNA double helix
Pre and Post Irradiation
Biological effects are a key concern
for lunar and Mars missions

Total Ionizing Dose (TID)

- Cumulative long term *ionizing* damage due to protons & electrons
- Effects
 - Threshold Shifts
 - Leakage Current
 - Timing Changes
 - Startup Transient Current
 - Functional Failures
- Unit of interest is krad (material)
- Can partially mitigate with shielding
 - Low energy protons
 - Electrons

TID effects on propagation delay of a 0.25 μm FPGA.

Chart shows initial performance and that of a modified COTS rad-tolerant FPGA

Increase in startup transient current at 75 krad (Si)

TID Effects Many COTS and Modified COTS Programmable Devices

Displacement Damage (DD)

- Cumulative long term non-ionizing damage due to protons, electrons, and neutrons
- Effects
 - Production of defects which results in device degradation
 - May be similar to TID effects
 - Optocouplers, solar cells, Cos, linear bipolar devices
- Unit of interest is particle fluence for each energy mapped to test energy
 - Non-ionizing energy loss (NIEL) is one means of discussing of
- Shielding has some effect depends on location of device
 - Reduce significant electron and some proton damage

Single Event Effects (SEEs)

- An SEE is caused by a single charged particle as it passes through a semiconductor material
 - Heavy ions
 - Direct ionization
 - Protons for sensitive devices
 - Nuclear reactions for standard devices
 - This is similar to the soft error rate (SER) in many respects

Chart shows the number of bit errors per event in a shift error from a single SET, in this case a "clock upset." FPGA design was subsequently modified.

- If the LET of the particle (or reaction) is greater than the amount of energy or critical charge required, an effect may be seen
 - · Soft errors such as upsets (SEUs) or transients (SETs), or
 - Complete loss of control of the device, or
 - Hard (destructive) errors such as latchup (SEL), burnout (SEB), or gate rupture (SEGR)
- Severity of effect is dependent on
 - Type of effect
 - System criticality

NASA designed SEU hard latch for FPGAs

NASA Missions – A Wide Range of Needs

- NASA typically has over 200 missions in some stage of development
 - Range from balloon and short-duration low-earth investigations to long-life deep space
 - Robotic to Human Presence
- Radiation and reliability needs vary commensurately
 - 5 krad (Si) ≤ TID ≤ 100 krad (Si), for ≥ 95% of all mission

Mars Global Surveyor Dust Storms in 2001

Use of FPGA in laser altimeter electronics when upgraded from Mars Explorer implementation.

Implications of NASA Mix to Radiation Requirements

- Prior to the new Vision for Space Exploration (re: Moon and Mars)
 - >95% of NASA missions required 100 krad (Si) or less for device total ionizing dose (TID) tolerance
 - Single Event Effects (SEEs) is a prime driver
 - Sensor hardness also a limiting factor
 - Many missions could accept risk of anomalies as long as recoverable over time
- Implications of the new vision are still TBD for radiation and reliability specifics, however,
 - Long-duration missions such as permanent stations on the moon require long-life high-reliability for infrastructure
 - Reliability will be the driver for FPGAs
 - Diverse technologies for manned Mars missions
 - Human presence requires conservative approaches to reliability and begets Radiation Protection Strategies
 - Drives stricter radiation tolerance requirements and fault tolerant architectures
 - Nuclear power/propulsion changes radiation issues (TID and displacement damage)

Lunar footprint
Courtesy of
NASA archives
(Note some Apollo
hardware is still
functioning on the Moon
and used by scientists)

NASA Trade Space for FPGA Usage

- NASA tends to build one-of-a-kind instruments (or at best, a few copies) and spacecraft
 - ASICs are used primarily in NASA when:
 - Performance driven: speed/size of circuit drive the need
 - Mixed-signal functions required
 - Repetitive usage of ASIC: applications that can utilize thousands of copies of the same circuit
 - We've seen up to 15,000 of the same ASIC used in a science instrument!
 - Other ASICs used in those role offer "generic" functions such as SpaceLAN, SpaceWire, Space Ethernet
 - FPGAs are used by NASA for
 - Standard logic replacement
 - Embedding microprocessors, memory, controllers, communications devices, in a path towards "systems on a chip."
 - Estimate of NASA ASIC vs. FPGA Usage
 - NASA uses >> 10 FPGA designs for every ASIC design
 - PLD Survey currently underway

NASA Applications for FPGAs

- In essence, electronic designs may be classed into two categories for NASA space, each has critical and non-critical sections:
 - Control/Spacecraft
 - Science/Instrument
- Control applications are the heartbeat of the space system
 - Reliability, minimal downtime (re: science data loss), failure-free, etc are the drivers
 - Control applications include explosive devices
 - Without an operating spacecraft, the best instrument is useless
- Science applications are the more performance driven
 - When you are measuring the universe, you need lots of resolution, bandwidth, and memory throughput
 - We can lose some data, but we can't lose a mission
 - Tolerance is getting stricter with longer staring times, etc for instruments
- Each will be discussed with type of FPGA NASA considers

Control Applications and FPGA NASA Needs

- Application: Control (ex., attitude control)
- General Needs:
 - High-reliability
 - Radiation hardness (system must be bullet-proof)
 - Fail-safe
- Device characteristics
 - Small to medium size
 - 10⁴ to 10⁵ gates
 - Operating speed ranges from low to high (< 200 MHz system clock)
 - One-time programmable (OTP) or reprogrammable
 - Reprogrammable is often preferred for schedule and flexibility, but can complicate system design (SEU tolerance/mitigation, etc...)
 - Low to moderate power
- Some NASA systems are using of reprogrammable devices for control
 - Extreme care needed to prevent inadvertent deployments or other critical events

Science Applications and FPGA NASA Needs

- Application: Science (ex., image data throughput)
- General Needs:
 - Medium to High performance
 - Radiation tolerance (acceptable data losses)
 - Fail-safe
- Device characteristics
 - 10⁴ to 10⁶ gates
 - Operating speeds range from low to high (some > 200 MHz)
 - Reprogrammable
 - Preferred for flexibility to adapt algorithms for on-board processing of science data
 - Low-power desired
 - Conflicts with larger device sizes
- Most NASA systems are still using OTP devices for radiation tolerance reasons

Current NASA FPGA Usage

- Primary NASA usage and plans:
 - Actel for OTP
 - Xilinx for SEU-based reprogrammable
 - Aeroflex coming into market
 - Licensed designs and OTP technology from Quicklogic
 - Honeywell Rad-Hard Reconfigurable FPGA (RHrFPGA)
 - Sold as board-level product
 - NASA a prime funding source
 - NASA supported radiation evaluation
- Other examples:
 - Altera (Space Shuttle, ISS) in communications applications
 - Lucent used in GPS receivers/processors
 - PLD's used in X-vehicles (planes)

NASA R&D Activities on FPGAs

- Reliability and Radiation Evaluation
 - Actel 54RTSX-S Programmed Antifuse Investigation
 - Rich Katz, NASA Office of Logic Design (OLD)
 - See http://klabs.org for details
 - Radiation evaluation board in design for Aeroflex FPGAs
 - Xilinx Virtex-II Pro
 - Funded by Missile Defense Agency
 - Consortia with AFRL, NAVSEA
 - SEE test scheduled for Aug 16th
 - JPL represents NASA on Xilinx SEE Consortia
 - See http://klabs.org for other recent radiation efforts
- Architecture
 - Multiple efforts looking at COTS reprogrammable FPGAs
 - System architectures funded under former NASA Code R MSMT
 - MDA funding of architecture work on Xilinx Virtex-II Pro
- Military and Aerospace Programmable Logic Devices International Conference (MAPLD)
 - September 8-10, 2004 in Washington, DC
 - Hosted by NASA Office of Logic Design (R. Katz)
 - http://klabs.org/mapld04
 - richard.b.katz@nasa.gov

NASA Desirements

- High Reliability: ≤ 10 FITs
- Non-volatile
- Reprogrammable, Unlimited Times, High-Speed, Device Sections
- Rad-tolerant (configuration should be radiation-hard)
 - ≥ 100 krad (Si)
 - ≥ 75 MeV-cm²/mg SEL
 - ≥ 75 MeV-cm²/mg Damage
 - ≥ 40 MeV-cm²/mg Configuration Memory and Control Registers SEU_{TH}
 - ≥ 40 MeV-cm²/mg SEU Control Applications
 - ≥ 15 MeV-cm²/mg SEU Science Data Processing Applications
- 10⁵ to 10⁶ Gates
- High-speed of Operation
- On-chip, dual-port, block memories
- Multiple on-chip processors with facilities for checkpointing, restarting, comparing, and sparing
- I/O Modules tolerant of different voltages and standards. This is critical as other devices on-card will be of varying technologies (commercial applications tend to not have this problem to a large extent).
- Support for high-speed arithmetic (e.g., fast carry chains, multipliers, etc.)
- Simple architecture: Complexity breeds design errors and makes validation efforts "challenging."
- Reliable and Accurate Software Tools e.g. Static Timing Analyzers
 - Guarantee both minimum and maximum bounds
 - Min/Max Clock Skew Analysis
 - Account for radiation and life effects
- Commercially compatible architecture
 - Use standard tool chain
 - Available "intellectual property"
 - Large designer experience base

Technical Issues

- Reliability: MEC SX-A and SX-S Programmed Antifuse
 - Currently undergoing intense study, evaluation, and modifications (NASA OLD/NESC, Aerospace Corp./DoD)
 - SX-SU (UMC) alternative is also being evaluated in parallel
 - SX-A used in many military weapons
- Radiation
 - Commercial FLASH is horrible
 - Commercial CMOS is VERY soft to SEU and may have destructive issues
 - Scrubbing, reconfiguration are okay, but not proven, and do not cover all of memory
- Signal Integrity
 - Programmable drive strength, slew, and impedance
 - Improved IBIS models
- Packaging
 - >1000 pin packages with no simple space qualification path
 - Interconnects
 - Ground bounce and V_{DD} sag
 - Additional power and ground pins
 - Capacitors internal to the package

- NASA recommends investments in three areas
 - Bulletproof device for control application
 - Reliability
 - Radiation
 - Verifiable Designs
 - Radiation-tolerant reprogrammable device for on-board processing and non-critical control applications
 - Compatible with commercial design tool chain
 - Goal: No radiation mitigation required
 - Supports mitigation strategies if necessary
 - Coordinated interagency evaluation program for COTS FPGAs
 - Radiation Test and mitigation
 - Reliability Test and detailed evaluation of vendor qualification
 - Intellectual Property Library of Government-developed IP

For additional information on NASA FPGA Efforts http://klabs.org